J. Phys. Soc. Japan 35 (1973) 1562

Effect of Hydrostatic Pressure on the Curie Temperatures of Ferroelectric CH₃NH₃Al(SO₄)₂·12H₂O (MASD) and NaNH₄SeO₄·2H₂O

Kazuo Gesi, Kunio Ozawa, Yasuharu Makita[†] and Toshio Ôsaka[†]

Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-11 †Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162

(Received August 15, 1973)

The effect of hydrostatic pressure on a ferroelectric phase transition has been known as a good indicator for the type of a given ferroelectric material; the pressure coefficient of the Curie temperature is negative for both ferroelectrics of displacive type and of hydrogen-bond type, while it is positive for those of order-disorder type. We have measured the effect of hydrostatic pressure on the ferroelectric Curie temperatures of two ferroelectrics containing hydrogens, $CH_3NH_3Al(SO_4)_2\cdot 12H_2O$ (MASD) (The Curie temperature at 1 atm $T_c{}^0=-96^\circC^2$) and $NaNH_4SeO_4\cdot 2H_2O$ ($T_c{}^0=-94^\circC^3$)). The experimental procedures were described elsewhere, and the Curie temperatures were determined from measurements of the dielectric constants at various hydrostatic pressures.

Figure 1 shows the pressure dependence of the Curie temperature of MASD. The Curie temperature T_c linearly increases with increasing hydrostatic pressure p up to about 7 kbar with a coefficient of $dT_c/dp=2.5\pm0.1\,deg\,kbar^{-1}$. The result for NaNH₄-SeO₄·2H₂O is indicated in Fig. 2. In contrast to the case of MASD, the Curie temperature of NaNH₄-SeO₄·2H₂O decreases with increasing pressure, having

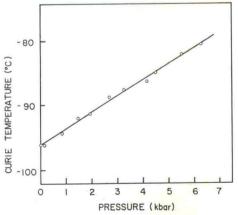


Fig. 1. Hydrostatic pressure dependence of the Curie temperature of CH₃NH₃Al(SO₄)₂·12H₂O (MASD).

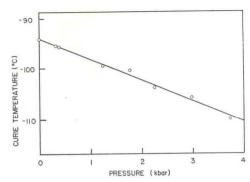


Fig. 2. Hydrostatic pressure dependence of the Curie temperature of NaNH₄SeO₄·2H₂O.

a rate of $dT_c/dp = -(4.1 \pm 0.2) \text{ deg kbar}^{-1}$.

The present results suggest that a proton collective motion in the hydrogen bonds may be less important for the ferroelectric process in MASD than for that in NaNH₄SeO₄·2H₂O. In fact, deuterization of hydrogens in MASD does not alter the Curie temperature,⁵⁾ being consistent with the above suggestion.

References

- G. A. Samara: Advances in High Pressure Research (Academic Press, N.Y., 1969) Vol. 3, p. 155.
- R. Pepinsky, F. Jona and G. Shirane: Phys. Rev. 102 (1956) 1181.
- K. S. Aleksandrov, I. P. Aleksandrova, L. I. Zherebtsova, M. P. Zaitseva and A. T. Anistratov: Ferroelectrics 2 (1971) 1.
- K. Gesi and K. Ozawa: J. Phys. Soc. Japan 34 (1973) 1698.
- 5) F. Jona and G. Shirane: Ferroelectric Crystals (Pergamon Press, Oxford, 1962) p. 326.